Embedded Artistry libc
C Standard Library Support for Bare-metal Systems
gdtoaimp.h
Go to the documentation of this file.
1 /****************************************************************
2 
3 The author of this software is David M. Gay.
4 
5 Copyright (C) 1998-2000 by Lucent Technologies
6 All Rights Reserved
7 
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
16 permission.
17 
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25 THIS SOFTWARE.
26 
27 ****************************************************************/
28 
29 /* This is a variation on dtoa.c that converts arbitary binary
30  floating-point formats to and from decimal notation. It uses
31  double-precision arithmetic internally, so there are still
32  various #ifdefs that adapt the calculations to the native
33  double-precision arithmetic (any of IEEE, VAX D_floating,
34  or IBM mainframe arithmetic).
35 
36  Please send bug reports to David M. Gay (dmg at acm dot org,
37  with " at " changed at "@" and " dot " changed to ".").
38  */
39 
40 /* On a machine with IEEE extended-precision registers, it is
41  * necessary to specify double-precision (53-bit) rounding precision
42  * before invoking strtod or dtoa. If the machine uses (the equivalent
43  * of) Intel 80x87 arithmetic, the call
44  * _control87(PC_53, MCW_PC);
45  * does this with many compilers. Whether this or another call is
46  * appropriate depends on the compiler; for this to work, it may be
47  * necessary to #include "float.h" or another system-dependent header
48  * file.
49  */
50 
51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
52  *
53  * This strtod returns a nearest machine number to the input decimal
54  * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
55  * broken by the IEEE round-even rule. Otherwise ties are broken by
56  * biased rounding (add half and chop).
57  *
58  * Inspired loosely by William D. Clinger's paper "How to Read Floating
59  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
60  *
61  * Modifications:
62  *
63  * 1. We only require IEEE, IBM, or VAX double-precision
64  * arithmetic (not IEEE double-extended).
65  * 2. We get by with floating-point arithmetic in a case that
66  * Clinger missed -- when we're computing d * 10^n
67  * for a small integer d and the integer n is not too
68  * much larger than 22 (the maximum integer k for which
69  * we can represent 10^k exactly), we may be able to
70  * compute (d*10^k) * 10^(e-k) with just one roundoff.
71  * 3. Rather than a bit-at-a-time adjustment of the binary
72  * result in the hard case, we use floating-point
73  * arithmetic to determine the adjustment to within
74  * one bit; only in really hard cases do we need to
75  * compute a second residual.
76  * 4. Because of 3., we don't need a large table of powers of 10
77  * for ten-to-e (just some small tables, e.g. of 10^k
78  * for 0 <= k <= 22).
79  */
80 
81 /*
82  * #define IEEE_8087 for IEEE-arithmetic machines where the least
83  * significant byte has the lowest address.
84  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85  * significant byte has the lowest address.
86  * #define Long int on machines with 32-bit ints and 64-bit longs.
87  * #define Sudden_Underflow for IEEE-format machines without gradual
88  * underflow (i.e., that flush to zero on underflow).
89  * #define IBM for IBM mainframe-style floating-point arithmetic.
90  * #define VAX for VAX-style floating-point arithmetic (D_floating).
91  * #define No_leftright to omit left-right logic in fast floating-point
92  * computation of dtoa.
93  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
94  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
95  * that use extended-precision instructions to compute rounded
96  * products and quotients) with IBM.
97  * #define ROUND_BIASED for IEEE-format with biased rounding.
98  * #define Inaccurate_Divide for IEEE-format with correctly rounded
99  * products but inaccurate quotients, e.g., for Intel i860.
100  * #define NO_LONG_LONG on machines that do not have a "long long"
101  * integer type (of >= 64 bits). On such machines, you can
102  * #define Just_16 to store 16 bits per 32-bit Long when doing
103  * high-precision integer arithmetic. Whether this speeds things
104  * up or slows things down depends on the machine and the number
105  * being converted. If long long is available and the name is
106  * something other than "long long", #define Llong to be the name,
107  * and if "unsigned Llong" does not work as an unsigned version of
108  * Llong, #define #ULLong to be the corresponding unsigned type.
109  * #define KR_headers for old-style C function headers.
110  * #define Bad_float_h if your system lacks a float.h or if it does not
111  * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
112  * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
113  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
114  * if memory is available and otherwise does something you deem
115  * appropriate. If MALLOC is undefined, malloc will be invoked
116  * directly -- and assumed always to succeed.
117  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
118  * memory allocations from a private pool of memory when possible.
119  * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
120  * unless #defined to be a different length. This default length
121  * suffices to get rid of MALLOC calls except for unusual cases,
122  * such as decimal-to-binary conversion of a very long string of
123  * digits. When converting IEEE double precision values, the
124  * longest string gdtoa can return is about 751 bytes long. For
125  * conversions by strtod of strings of 800 digits and all gdtoa
126  * conversions of IEEE doubles in single-threaded executions with
127  * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
128  * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
129  * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
130  * Infinity and NaN (case insensitively).
131  * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
132  * strtodg also accepts (case insensitively) strings of the form
133  * NaN(x), where x is a string of hexadecimal digits (optionally
134  * preceded by 0x or 0X) and spaces; if there is only one string
135  * of hexadecimal digits, it is taken for the fraction bits of the
136  * resulting NaN; if there are two or more strings of hexadecimal
137  * digits, each string is assigned to the next available sequence
138  * of 32-bit words of fractions bits (starting with the most
139  * significant), right-aligned in each sequence.
140  * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
141  * is consumed even when ... has the wrong form (in which case the
142  * "(...)" is consumed but ignored).
143  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
144  * multiple threads. In this case, you must provide (or suitably
145  * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
146  * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
147  * in pow5mult, ensures lazy evaluation of only one copy of high
148  * powers of 5; omitting this lock would introduce a small
149  * probability of wasting memory, but would otherwise be harmless.)
150  * You must also invoke freedtoa(s) to free the value s returned by
151  * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
152  * #define IMPRECISE_INEXACT if you do not care about the setting of
153  * the STRTOG_Inexact bits in the special case of doing IEEE double
154  * precision conversions (which could also be done by the strtog in
155  * dtoa.c).
156  * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
157  * floating-point constants.
158  * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
159  * strtodg.c).
160  * #define NO_STRING_H to use private versions of memcpy.
161  * On some K&R systems, it may also be necessary to
162  * #define DECLARE_SIZE_T in this case.
163  * #define YES_ALIAS to permit aliasing certain double values with
164  * arrays of ULongs. This leads to slightly better code with
165  * some compilers and was always used prior to 19990916, but it
166  * is not strictly legal and can cause trouble with aggressively
167  * optimizing compilers (e.g., gcc 2.95.1 under -O2).
168  * #define USE_LOCALE to use the current locale's decimal_point value.
169  */
170 
171 #ifndef GDTOAIMP_H_INCLUDED
172 #define GDTOAIMP_H_INCLUDED
173 #include "gd_qnan.h"
174 #include "gdtoa.h"
175 
176 #ifdef DEBUG
177 #ifdef GDTOA_HOST_DEBUG
178 #include <stdio.h>
179 #define Bug(x) \
180  { \
181  fprintf(stderr, "%s\n", x); \
182  exit(1); \
183  }
184 #else
185 #ifdef GDTOA_NO_ASSERT
186 #define Bug(...)
187 #else
188 #include <assert.h>
189 #define Bug(x) assert(!(x))
190 #endif // GDTOA_NO_ASSET
191 #endif // GDTOA_HOST_DEBUG
192 #endif // DEBUG
193 
194 #include "stdlib.h"
195 #include "string.h"
196 
197 #ifdef KR_headers
198 #define Char char
199 #else
200 #define Char void
201 #endif
202 
203 #ifdef MALLOC
204 extern Char* MALLOC ANSI((size_t));
205 #else
206 #define MALLOC malloc
207 #endif
208 
209 #undef IEEE_Arith
210 #undef Avoid_Underflow
211 #ifdef IEEE_MC68k
212 #define IEEE_Arith
213 #endif
214 #ifdef IEEE_8087
215 #define IEEE_Arith
216 #endif
217 
218 #ifndef NO_ERRNO
219 #include "errno.h"
220 #endif
221 
222 #ifdef Bad_float_h
223 
224 #ifdef IEEE_Arith
225 #define DBL_DIG 15
226 #define DBL_MAX_10_EXP 308
227 #define DBL_MAX_EXP 1024
228 #define FLT_RADIX 2
229 #define DBL_MAX 1.7976931348623157e+308
230 #endif
231 
232 #ifdef IBM
233 #define DBL_DIG 16
234 #define DBL_MAX_10_EXP 75
235 #define DBL_MAX_EXP 63
236 #define FLT_RADIX 16
237 #define DBL_MAX 7.2370055773322621e+75
238 #endif
239 
240 #ifdef VAX
241 #define DBL_DIG 16
242 #define DBL_MAX_10_EXP 38
243 #define DBL_MAX_EXP 127
244 #define FLT_RADIX 2
245 #define DBL_MAX 1.7014118346046923e+38
246 #define n_bigtens 2
247 #endif
248 
249 #ifndef LONG_MAX
250 #define LONG_MAX 2147483647
251 #endif
252 
253 #else /* ifndef Bad_float_h */
254 #include "float.h"
255 #endif /* Bad_float_h */
256 
257 #ifdef IEEE_Arith
258 #define Scale_Bit 0x10
259 #define n_bigtens 5
260 #endif
261 
262 #ifdef IBM
263 #define n_bigtens 3
264 #endif
265 
266 #ifdef VAX
267 #define n_bigtens 2
268 #endif
269 
270 #ifndef GDTOA_NO_MATH_H
271 #ifndef __MATH_H__
272 #include "math.h"
273 #endif
274 #endif
275 
276 #ifdef __cplusplus
277 extern "C" {
278 #endif
279 
280 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
281 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
282 #endif
283 
284  typedef union
285 {
286  double d;
287  ULong L[2];
288 } U;
289 
290 #ifdef YES_ALIAS
291 #define dval(x) x
292 #ifdef IEEE_8087
293 #define word0(x) ((ULong*)&x)[1]
294 #define word1(x) ((ULong*)&x)[0]
295 #else
296 #define word0(x) ((ULong*)&x)[0]
297 #define word1(x) ((ULong*)&x)[1]
298 #endif
299 #else /* !YES_ALIAS */
300 #ifdef IEEE_8087
301 #define word0(x) ((U*)&x)->L[1]
302 #define word1(x) ((U*)&x)->L[0]
303 #else
304 #define word0(x) ((U*)&x)->L[0]
305 #define word1(x) ((U*)&x)->L[1]
306 #endif
307 #define dval(x) ((U*)&x)->d
308 #endif /* YES_ALIAS */
309 
310 /* The following definition of Storeinc is appropriate for MIPS processors.
311  * An alternative that might be better on some machines is
312  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
313  */
314 #if defined(IEEE_8087) + defined(VAX)
315 #define Storeinc(a, b, c) \
316  (((unsigned short*)a)[1] = (unsigned short)b, ((unsigned short*)a)[0] = (unsigned short)c, a++)
317 #else
318 #define Storeinc(a, b, c) \
319  (((unsigned short*)a)[0] = (unsigned short)b, ((unsigned short*)a)[1] = (unsigned short)c, a++)
320 #endif
321 
322 /* #define P DBL_MANT_DIG */
323 /* Ten_pmax = floor(P*log(2)/log(5)) */
324 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
325 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
326 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
327 
328 #ifdef IEEE_Arith
329 #define Exp_shift 20
330 #define Exp_shift1 20
331 #define Exp_msk1 0x100000
332 #define Exp_msk11 0x100000
333 #define Exp_mask 0x7ff00000
334 #define P 53
335 #define Bias 1023
336 #define Emin (-1022)
337 #define Exp_1 0x3ff00000
338 #define Exp_11 0x3ff00000
339 #define Ebits 11
340 #define Frac_mask 0xfffff
341 #define Frac_mask1 0xfffff
342 #define Ten_pmax 22
343 #define Bletch 0x10
344 #define Bndry_mask 0xfffff
345 #define Bndry_mask1 0xfffff
346 #define LSB 1
347 #define Sign_bit 0x80000000
348 #define Log2P 1
349 #define Tiny0 0
350 #define Tiny1 1
351 #define Quick_max 14
352 #define Int_max 14
353 
354 #ifndef Flt_Rounds
355 #ifdef FLT_ROUNDS
356 #define Flt_Rounds FLT_ROUNDS
357 #else
358 #define Flt_Rounds 1
359 #endif
360 #endif /*Flt_Rounds*/
361 
362 #else /* ifndef IEEE_Arith */
363 #undef Sudden_Underflow
364 #define Sudden_Underflow
365 #ifdef IBM
366 #undef Flt_Rounds
367 #define Flt_Rounds 0
368 #define Exp_shift 24
369 #define Exp_shift1 24
370 #define Exp_msk1 0x1000000
371 #define Exp_msk11 0x1000000
372 #define Exp_mask 0x7f000000
373 #define P 14
374 #define Bias 65
375 #define Exp_1 0x41000000
376 #define Exp_11 0x41000000
377 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
378 #define Frac_mask 0xffffff
379 #define Frac_mask1 0xffffff
380 #define Bletch 4
381 #define Ten_pmax 22
382 #define Bndry_mask 0xefffff
383 #define Bndry_mask1 0xffffff
384 #define LSB 1
385 #define Sign_bit 0x80000000
386 #define Log2P 4
387 #define Tiny0 0x100000
388 #define Tiny1 0
389 #define Quick_max 14
390 #define Int_max 15
391 #else /* VAX */
392 #undef Flt_Rounds
393 #define Flt_Rounds 1
394 #define Exp_shift 23
395 #define Exp_shift1 7
396 #define Exp_msk1 0x80
397 #define Exp_msk11 0x800000
398 #define Exp_mask 0x7f80
399 #define P 56
400 #define Bias 129
401 #define Exp_1 0x40800000
402 #define Exp_11 0x4080
403 #define Ebits 8
404 #define Frac_mask 0x7fffff
405 #define Frac_mask1 0xffff007f
406 #define Ten_pmax 24
407 #define Bletch 2
408 #define Bndry_mask 0xffff007f
409 #define Bndry_mask1 0xffff007f
410 #define LSB 0x10000
411 #define Sign_bit 0x8000
412 #define Log2P 1
413 #define Tiny0 0x80
414 #define Tiny1 0
415 #define Quick_max 15
416 #define Int_max 15
417 #endif /* IBM, VAX */
418 #endif /* IEEE_Arith */
419 
420 #ifndef IEEE_Arith
421 #define ROUND_BIASED
422 #endif
423 
424 #ifdef RND_PRODQUOT
425 #define rounded_product(a, b) a = rnd_prod(a, b)
426 #define rounded_quotient(a, b) a = rnd_quot(a, b)
427 #ifdef KR_headers
428 extern double rnd_prod(), rnd_quot();
429 #else
430 extern double rnd_prod(double, double), rnd_quot(double, double);
431 #endif
432 #else
433 #define rounded_product(a, b) a *= b
434 #define rounded_quotient(a, b) a /= b
435 #endif
436 
437 #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
438 #define Big1 0xffffffff
439 
440 #undef Pack_16
441 #ifndef Pack_32
442 #define Pack_32
443 #endif
444 
445 #ifdef NO_LONG_LONG
446 #undef ULLong
447 #ifdef Just_16
448 #undef Pack_32
449 #define Pack_16
450 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
451  * This makes some inner loops simpler and sometimes saves work
452  * during multiplications, but it often seems to make things slightly
453  * slower. Hence the default is now to store 32 bits per Long.
454  */
455 #endif
456 #else /* long long available */
457 #ifndef Llong
458 #define Llong long long
459 #endif
460 #ifndef ULLong
461 #define ULLong unsigned Llong
462 #endif
463 #endif /* NO_LONG_LONG */
464 
465 #ifdef Pack_32
466 #define ULbits 32
467 #define kshift 5
468 #define kmask 31
469 #define ALL_ON 0xffffffff
470 #else
471 #define ULbits 16
472 #define kshift 4
473 #define kmask 15
474 #define ALL_ON 0xffff
475 #endif
476 
477 #ifndef MULTIPLE_THREADS
478 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
479 #define FREE_DTOA_LOCK(n) /*nothing*/
480 #endif
481 
482 #define Kmax 15
483 
484 struct Bigint
485 {
486  struct Bigint* next;
487  int k, maxwds, sign, wds;
488  ULong x[1];
489 };
490 
491 typedef struct Bigint Bigint;
492 
493 #ifdef NO_STRING_H
494 #ifdef DECLARE_SIZE_T
495 typedef unsigned int size_t;
496 #endif
497 extern void memcpy_D2A ANSI((void*, const void*, size_t));
498 #define Bcopy(x, y) \
499  memcpy_D2A(&x->sign, &y->sign, (size_t)(y->wds) * sizeof(ULong) + 2 * sizeof(int))
500 #else /* !NO_STRING_H */
501 #define Bcopy(x, y) memcpy(&x->sign, &y->sign, (size_t)(y->wds) * sizeof(ULong) + 2 * sizeof(int))
502 #endif /* NO_STRING_H */
503 
504 #define Balloc Balloc_D2A
505 #define Bfree Bfree_D2A
506 #define ULtoQ ULtoQ_D2A
507 #define ULtof ULtof_D2A
508 #define ULtod ULtod_D2A
509 #define ULtodd ULtodd_D2A
510 #define ULtox ULtox_D2A
511 #define ULtoxL ULtoxL_D2A
512 #define any_on any_on_D2A
513 #define b2d b2d_D2A
514 #define bigtens bigtens_D2A
515 #define cmp cmp_D2A
516 #define copybits copybits_D2A
517 #define d2b d2b_D2A
518 #define decrement decrement_D2A
519 #define diff diff_D2A
520 #define dtoa_result dtoa_result_D2A
521 #define g__fmt g__fmt_D2A
522 #define gethex gethex_D2A
523 #define hexdig hexdig_D2A
524 #define hexnan hexnan_D2A
525 #define hi0bits(x) hi0bits_D2A((ULong)(x))
526 #define i2b i2b_D2A
527 #define increment increment_D2A
528 #define lo0bits lo0bits_D2A
529 #define lshift lshift_D2A
530 #define match match_D2A
531 #define mult mult_D2A
532 #define multadd multadd_D2A
533 #define nrv_alloc nrv_alloc_D2A
534 #define pow5mult pow5mult_D2A
535 #define quorem quorem_D2A
536 #define ratio ratio_D2A
537 #define rshift rshift_D2A
538 #define rv_alloc rv_alloc_D2A
539 #define s2b s2b_D2A
540 #define set_ones set_ones_D2A
541 #define strcp strcp_D2A
542 #define strtoIg strtoIg_D2A
543 #define sum sum_D2A
544 #define tens tens_D2A
545 #define tinytens tinytens_D2A
546 #define tinytens tinytens_D2A
547 #define trailz trailz_D2A
548 #define ulp ulp_D2A
549 
550 extern char* dtoa_result;
551 extern CONST double bigtens[], tens[], tinytens[];
552 extern unsigned char hexdig[];
553 
554 extern Bigint* Balloc ANSI((int));
555 extern void Bfree ANSI((Bigint*));
556 extern void ULtof ANSI((ULong*, const ULong*, Long, int));
557 extern void ULtod ANSI((ULong*, const ULong*, Long, int));
558 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
559 extern void ULtoQ ANSI((ULong*, const ULong*, Long, int));
560 extern void ULtox ANSI((UShort*, const ULong*, Long, int));
561 extern void ULtoxL ANSI((ULong*, const ULong*, Long, int));
562 extern ULong any_on ANSI((Bigint*, int));
563 extern double b2d ANSI((Bigint*, int*));
564 extern int cmp ANSI((Bigint*, Bigint*));
565 extern void copybits ANSI((ULong*, int, Bigint*));
566 extern Bigint* d2b ANSI((double, int*, int*));
567 extern int decrement ANSI((Bigint*));
568 extern Bigint* diff ANSI((Bigint*, Bigint*));
569 extern char* dtoa ANSI((double d, int mode, int ndigits, int* decpt, int* sign, char** rve));
570 extern char* g__fmt ANSI((char*, char*, const char*, int, ULong));
571 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
572 extern void hexdig_init_D2A(Void);
573 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
574 extern int hi0bits_D2A ANSI((ULong));
575 extern Bigint* i2b ANSI((int));
576 extern Bigint* increment ANSI((Bigint*));
577 extern int lo0bits ANSI((ULong*));
578 extern Bigint* lshift ANSI((Bigint*, int));
579 extern int match ANSI((CONST char**, char*));
580 extern Bigint* mult ANSI((Bigint*, Bigint*));
581 extern Bigint* multadd ANSI((Bigint*, int, int));
582 extern char* nrv_alloc ANSI((char*, char**, int));
583 extern Bigint* pow5mult ANSI((Bigint*, int));
584 extern int quorem ANSI((Bigint*, Bigint*));
585 extern double ratio ANSI((Bigint*, Bigint*));
586 extern void rshift ANSI((Bigint*, int));
587 extern char* rv_alloc ANSI((int));
588 extern Bigint* s2b ANSI((CONST char*, int, int, ULong));
589 extern Bigint* set_ones ANSI((Bigint*, int));
590 extern char* strcp ANSI((char*, const char*));
591 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
592 extern double strtod ANSI((const char* s00, char** se));
593 extern Bigint* sum ANSI((Bigint*, Bigint*));
594 extern int trailz ANSI((Bigint*));
595 extern double ulp ANSI((double));
596 
597 #ifdef __cplusplus
598 }
599 #endif
600 /*
601  * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
602  * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
603  * respectively), but now are determined by compiling and running
604  * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
605  * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
606  * and -DNAN_WORD1=... values if necessary. This should still work.
607  * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
608  */
609 #ifdef IEEE_Arith
610 #ifdef IEEE_MC68k
611 #define _0 0
612 #define _1 1
613 #ifndef NAN_WORD0
614 #define NAN_WORD0 d_QNAN0
615 #endif
616 #ifndef NAN_WORD1
617 #define NAN_WORD1 d_QNAN1
618 #endif
619 #else
620 #define _0 1
621 #define _1 0
622 #ifndef NAN_WORD0
623 #define NAN_WORD0 d_QNAN1
624 #endif
625 #ifndef NAN_WORD1
626 #define NAN_WORD1 d_QNAN0
627 #endif
628 #endif
629 #else
630 #undef INFNAN_CHECK
631 #endif
632 
633 #undef SI
634 #ifdef Sudden_Underflow
635 #define SI 1
636 #else
637 #define SI 0
638 #endif
639 
640 #endif /* GDTOAIMP_H_INCLUDED */
#define bigtens
Definition: gdtoaimp.h:514
ULong x[1]
Definition: gdtoaimp.h:488
#define Char
Definition: gdtoaimp.h:200
#define lshift
Definition: gdtoaimp.h:529
#define quorem
Definition: gdtoaimp.h:535
int wds
Definition: gdtoaimp.h:487
#define mult
Definition: gdtoaimp.h:531
#define ULtoxL
Definition: gdtoaimp.h:511
#define rshift
Definition: gdtoaimp.h:537
#define s2b
Definition: gdtoaimp.h:539
Definition: gdtoaimp.h:284
#define strtoIg
Definition: gdtoaimp.h:542
#define ULtof
Definition: gdtoaimp.h:507
#define dtoa_result
Definition: gdtoaimp.h:520
#define CONST
Definition: gdtoa.h:61
#define lo0bits
Definition: gdtoaimp.h:528
#define sum
Definition: gdtoaimp.h:543
int sign
Definition: gdtoaimp.h:487
#define decrement
Definition: gdtoaimp.h:518
#define increment
Definition: gdtoaimp.h:527
double d
Definition: gdtoaimp.h:286
#define tens
Definition: gdtoaimp.h:544
#define match
Definition: gdtoaimp.h:530
#define hexdig
Definition: gdtoaimp.h:523
#define diff
Definition: gdtoaimp.h:519
#define ULtodd
Definition: gdtoaimp.h:509
Bigint *Balloc ANSI((int))
unsigned short UShort
Definition: gdtoa.h:44
Exactly one of IEEE_8087
Definition: gdtoaimp.h:281
#define pow5mult
Definition: gdtoaimp.h:534
int maxwds
Definition: gdtoaimp.h:487
char * dtoa(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
Definition: dtoa.c:84
#define Bfree
Definition: gdtoaimp.h:505
static Akind IBM
Definition: arithchk.c:36
#define i2b
Definition: gdtoaimp.h:526
#define cmp
Definition: gdtoaimp.h:515
#define b2d
Definition: gdtoaimp.h:513
#define Balloc
Definition: gdtoaimp.h:504
#define any_on
Definition: gdtoaimp.h:512
Exactly one of VAX
Definition: gdtoaimp.h:281
#define ULtox
Definition: gdtoaimp.h:510
unsigned Long ULong
Definition: gdtoa.h:41
#define ratio
Definition: gdtoaimp.h:536
#define copybits
Definition: gdtoaimp.h:516
#define hexnan
Definition: gdtoaimp.h:524
#define set_ones
Definition: gdtoaimp.h:540
#define ULtoQ
Definition: gdtoaimp.h:506
#define multadd
Definition: gdtoaimp.h:532
#define trailz
Definition: gdtoaimp.h:547
#define tinytens
Definition: gdtoaimp.h:546
#define d2b
Definition: gdtoaimp.h:517
#define MALLOC
Definition: gdtoaimp.h:206
Definition: gdtoa.h:86
#define ulp
Definition: gdtoaimp.h:548
#define g__fmt
Definition: gdtoaimp.h:521
#define ULtod
Definition: gdtoaimp.h:508
Exactly one of IEEE_MC68k
Definition: gdtoaimp.h:281
#define Void
Definition: gdtoa.h:53
#define strcp
Definition: gdtoaimp.h:541
#define Long
Definition: gdtoa.h:38
void hexdig_init_D2A(Void)
Definition: hd_init.c:52
int k
Definition: gdtoaimp.h:487
struct Bigint * next
Definition: gdtoaimp.h:486
#define gethex
Definition: gdtoaimp.h:522
#define nrv_alloc
Definition: gdtoaimp.h:533
int hi0bits_D2A(register ULong x)
Definition: misc.c:229
double strtod(const char *__restrict str, char **__restrict str_end)
Interprets a floating-point value in a byte string pointed to by str.
#define rv_alloc
Definition: gdtoaimp.h:538